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Abstract Recently, a new linguistic rule representation
model was presented to perform a genetic lateral tuning
of membership functions. It is based on the linguistic
2-tuples representation model, that allows the symbolic
translation of a label considering an unique parameter.
It involves a reduction of the search space that eases
the derivation of optimal models. This work presents a
new symbolic representation with three values (s, α, β),
respectively representing a label, the lateral displace-
ment and the amplitude variation of the support of this
label. Based on this new representation we propose a
new method for fine tuning of membership functions
that is combined with a rule base reduction method in
order to extract the most useful tuned rules. This ap-
proach makes use of a modified inference system that
consider non-covered inputs in order to improve the fi-
nal fuzzy model generalization ability, specially in highly
non-linear problems with noise points. Additionally, we
analyze the proposed approach showing its behavior in
two real-world applications.
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1 Introduction

Fuzzy modeling (FM)—i.e., system modeling with fuzzy
rule-based systems (FRBSs)—may be considered as an
approach used to model a system making use of a descrip-
tive language based on fuzzy logic [45,46] with fuzzy
predicates [47]. Several types of modeling can be per-
formed by using different types of FRBSs and depending
of the desired degree of interpretability and accuracy
of the final model. Unfortunately, both requirements
are contradictory properties directly depending on the
learning process and/or the model structure.

In this framework, one of the most important ar-
eas is linguistic FM, where the interpretability of the
obtained model is the main requirement. This task is
usually developed by means of linguistic FRBSs (also
called Mamdani FRBSs [37,38]), which use fuzzy rules
composed of linguistic variables [47] taking values in a
term set with a real-world meaning. Thus, the linguistic
fuzzy model consists of a set of linguistic descriptions
regarding the behavior of the system being modeled.

One of the problems associated to linguistic FM is
its lack of accuracy when modeling some complex sys-
tems. It is due to the inflexibility of the concept of lin-
guistic variable, which imposes hard restrictions to the
fuzzy rule structure [3]. This drawback leads linguistic
FM to sometimes move away from the desired trade-
off between interpretability and accuracy, thus losing
the usefulness of the model. To overcome this problem,
many different possibilities to improve the accuracy of
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linguistic FM while preserving its intrinsic interpretabil-
ity have been considered in the specialized literature [4].

Recently, to improve the accuracy of FRBSs (improv-
ing the said trade-off), a new linguistic rule representa-
tion model was proposed to perform a genetic lateral
tuning of membership functions [1]. This new approach
was based on the linguistic 2-tuples representation [23],
that allows the symbolic translation of a label by con-
sidering an unique parameter per label. In this way, two
main objectives were achieved:

– To obtain membership functions containing a set of
samples with a better covering degree maintaining
their original shapes (accuracy improvements), and

– To reduce the search space respect to the classical
tuning [2,13,19–21,31,32] (usually considering three
parameters in the case of triangular membership
functions), in order to easily obtain optimal models.

However, the amplitude of the support of the member-
ship functions is fixed through this tuning process. This
amplitude determines the specificity of a label and in-
volves a potential accuracy improvement, since it could
determine the best covering region of such label.

On the other hand, in order to improve the interpret-
ability, rule reduction methods directly aggregate mul-
tiple rules and/or select a subset of rules from a given
fuzzy rule set [30,34]. The combination of tuning ap-
proaches with rule selection methods can present a pos-
itive synergy, reducing the tuning search space, easing
the readability and even improving the system accuracy.

This work presents a new symbolic representation
with three values (s, α, β), respectively representing a
label, the lateral displacement and the amplitude var-
iation of the support of this label. Based on this new
representation, we propose a new method for the Lat-
eral and Amplitude tuning (LA-tuning) of membership
functions, that is combined with a rule base (RB) reduc-
tion method with the main aim of improving the system
accuracy and trying to maintain part of the interpret-
ability as much as possible respect to the lateral tuning.
The use of the new parameter β improves the accu-
racy but loses part of the interpretability, since it has
no meaning associated in principle. However, the RB
reduction method extracts the most useful tuned rules
(the rules with a better information), obtaining a sim-
pler knowledge base (KB) and therefore, enhancing the
interpretability. This way to work still gives a reasonable
trade-off between accuracy and interpretability.

Additionally, we introduce a new inference system
that consider non-covered inputs in order to improve
the final fuzzy model generalization ability, specially in

highly non-linear problems with noise (which can in fact
present new data in the test or the real system).

The paper is arranged as follows. The next section
presents the LA-tuning of membership functions and
the new inference system for non-covered data. Sec-
tion 3 describes an evolutionary algorithm to perform
the LA-tuning. In Sect. 4, the evolutionary method to
perform the LA-tuning together with a rule selection is
proposed. Section 5 shows an experimental study of the
methods behavior applied to two real-world electrical
distribution problems. Finally, Sect. 6 points out some
conclusions.

2 A proposal for the LA-tuning of fuzzy rule-based
systems

In this section, we will introduce the lateral tuning of
membership functions —a part of the LA-tuning. Then,
the extension of the lateral tuning to also perform the
amplitude tuning will be described, presenting the new
rule representation and two different tuning approaches
(global approach and local approach).

2.1 Preliminaries: the lateral tuning

In [1], a new model of tuning of FRBSs was proposed
considering the linguistic 2-tuples representation scheme
introduced in [23], which allows the lateral displacement
of the support of a label and maintains a good interpret-
ability associated to the obtained linguistic FRBSs. This
proposal also introduces a new model for rule represen-
tation based on the concept of symbolic translation (the
lateral displacement of a label).

The symbolic translation of a linguistic term is a num-
ber within the interval [−0.5, 0.5) that expresses the
domain of a label when it is moving between its two
lateral labels. Let us consider a set of labels S represent-
ing a fuzzy partition. Formally, we have the pair,

(si, αi), si ∈ S, αi ∈ [−0.5, 0.5).

Figure 1 depicts the symbolic translation of a label
represented by the pair (S2, S − 0.3), considering a set
S with five linguistic terms represented by their ordinal
values ({0, 1, 2, 3, 4}).

In [23], both the linguistic 2-tuples representation
model and the needed elements for linguistic informa-
tion comparison and aggregation are presented and ap-
plied to the decision making framework. In the context
of the FRBSs, we are going to see its use in the linguis-
tic rule representation. Below we present this approach
considering a simple control problem.
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Fig. 1 Symbolic translation of a label

Let us consider a control problem with two input vari-
ables, one output variable and a data base (DB) defined
from experts determining the membership functions for
the following labels:

X1: Error → {N, Z, P},
X2: �Error → {N, Z, P},
Y: Power → {L, M, H}.

Based on this DB definition, an example of classical rule
and linguistic 2-tuples represented rule is:

Classical rule,
R1: If the error is Zero and the �Error is Positive

then the Power is High .

Rule with 2-tuples representation,
R1: If the error is (Zero, 0.3) and the �Error is

(Positive, −0.2) then the Power is (High, −0.1).

Analyzed from the rule interpretability point of view,
we could interpret the linguistic 2-tuples represented
rule in the following way:

If the Error is “higher than Zero” and

the Error Variation is “a little smaller than Positive”

then the Power is “a bit smaller than High”.

This proposal decreases the tuning problem complex-
ity, since the three parameters usually considered per
label [2,13,19–21,31,32] are reduced to only one sym-
bolic translation parameter.

2.2 The LA-tuning of membership functions

This approach is an extension of the lateral tuning to
also perform a tuning of the support amplitude of the
membership functions. To adjust the displacements and
amplitudes of the membership function supports we
propose a new rule representation that considers two
parameters, α and β, relatively representing the lateral
displacement and the amplitude variation of a label.
In this way, each label can be represented by a 3-tuple

(s, α, β), where α is a number within the interval
[−0.5, 0.5) that expresses the domain of a label when
it is moving between its two lateral labels (as in the 2-
tuples representation), and β is also a number within the
interval [−0.5, 0.5) that allows to increase or reduce the
support amplitude of a label until a 50% of its original
size. Let us consider a set of labels S representing a fuzzy
partition. Formally, we have the triplet,

(si, αi, βi), si ∈ S, {αi, βi} ∈ [−0.5, 0.5)

Figure 2 depicts the lateral and amplitude variation
of the label M considering triangular and symmetrical
equidistant membership functions. The new label “y2”
is located between labels S and M, and has a shorter
support than the original label M. Let us represent the
new label “y2” as the 3-tuple (M, α, β). The support of
this label, Supy2

, can be computed in the following way:

SupM = cM − aM
Supy2

= SupM + β ∗ SupM ,

where cM and aM are respectively the right and the left
extreme of the support of M, and SupM is the size of the
support of M.

In [1], two different rule representation approaches
were proposed for the lateral tuning of membership
functions, a global approach and a local approach. We

ES MSVS L VL EL

ES MSVS L VL ELy2

y2

α = -0.5

β = -0.25

Fig. 2 Lateral displacement and amplitude variation of the lin-
guistic label M considering the set of labels S={ES, VS, S, M, L,
VL, EL}
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will consider the same two possibilities to perform the
LA-tuning, the most interpretable one and the most
accurate one:

– Global tuning of the semantics. In this case, the tun-
ing is applied to the level of linguistic partition. In
this way, the pair (Xi, label) takes the same tuning
values in all the rules where it is considered. For
example, Xi is (High, 0.3, 0.1) will present the same
values for those rules in which the pair “Xi is High”
was initially considered.

– Local tuning of the rules. In this case, the tuning is
applied to the level of rule. The pair (Xi, label) is
tuned in a different way in each rule:

Rule k: Xi is (High, 0.3, 0.1)
Rule j: Xi is (High, −0.2, 0.25)

Notice that, since symmetrical triangular membership
functions and a FITA (First Infer, Then Aggregate) fuzzy
inference [8] will be considered in both, the global and
the local approach, a tuning of the amplitude of the con-
sequents has no sense, by which the β parameter will be
only applied on the antecedents. In this way, consider-
ing the same control problem of the previous subsection,
an example of a 3-tuples represented rule is (amplitude
variation only applied in the antecedents):

Rule with 3-tuples representation,
R1: If the error is (Zero,0.3,0.1) and the �Error is

(Positive,−0.2,−0.4) then the Power is (High,−0.1) .

Analized from the rule interpretability point of view,
we could interpret the lateral displacement as said in
Sect. 2.1. However, it is not clear a meaning for the
amplitude factor β. In this way, if the final membership
functions are more or less well distributed and no strong
amplitude changes have been performed, an expert per-
haps could rename these labels given them a more or
less representative meaning.

On the other hand, the use of the β factor (amplitude)
is close to the use of non-linear scaling factors [9,36]
or linguistic modifiers [9,18]. However there are some
differences with these approaches:

a) By using non-linear scaling factors or linguistic mod-
ifiers an example that is covered by a label can not
be uncovered and vice versa, which imposes some
restrictions to the search. Determining the ampli-
tude of a membership function is a way to decide
which examples are covered or not, better grouping
a set of data. Therefore, tuning the amplitude of the
membership functions can help,

– To reduce the number of negative examples
(those covered in antecedents but not in the
consequents),

– To increase the number of positive examples
(those covered in antecedents and consequents),
or

– To reduce the number of rules if a rule selection
method is considered.

b) Contrary to the non-linear scaling factors or linguis-
tic modifiers, the tuning of the support amplitude
keeps the shape of the membership functions (trian-
gular and symmetrical). In this way, from the param-
eters α and β applied to each label, we could obtain
the equivalent triangular membership functions, by
which the final tuned FRBS could be represented as
a classical Mamdani FRBS [37,38].

2.3 Fuzzy inference system

The fuzzy reasoning method is the minimum playing the
role of the implication and conjunctive operators, and
the center of gravity weighted by the matching strategy
acting as defuzzification operator [8] (FITA scheme).
These kinds of inference is applied once the 3-tuples
represented model is transformed to (represented by)
its equivalent classical Mamdani FRBS.

Since the support of the final membership functions
comprising the rules can be reduced and displaced and
a rule selection method can be also considered, there
could be non-covered zones in the input space. Taking
into account that the tuning algorithm is biased by error
measures, this fact is not a problem. Non-covered train-
ing data usually provokes high errors in the system and
finally they would be covered as a result of the optimi-
zation process. However, in real problems with strong
non-linearity, a few number of training data (usually not
totally representative of the modeling surface) and even
with noise data, a good behavior of the obtained model
is not ensured for the non-covered test data (i.e., the gen-
eralization of the final linguistic model could not be good
for uncovered inputs). Furthermore, when noise points
are present in the training data, the optimization process
could try to not cover these points in order to improve
the behavior of the truly available data. In this way, to
consider non-covered input data for the system output
computation, the following mechanism is applied:

1. The nearest rule to the non-covered point is iden-
tified (normalized euclidean distance to the vertex
of the labels). The non-covered coordinates of the
point are set to the value of the vertex of the corre-
sponding label. The euclidean distance is normalized
by the maximum distance among the vertex of the
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different labels considered for each coordinate in the
corresponding RB.

2. The second nearest rule is identified. Then, if the
consequent labels of both rules present overlapping
to some degree, we only infer with the nearest rule
since it will be the most representative in a subspace
that does not present strong changes in the output
domain.

3. In other case, the final FRBS output should be ob-
tained by interpolation of both rules, since strong
changes are detected in this subspace output domain.
To do that, the coordinates of the point that are ini-
tially covered are displaced towards the second rule,
ensuring a minimum covering degree of the nearest
rule (nearing these coordinates to the corresponding
label extreme at the 10% of the support size). As
example, let ei be a coordinate of the non-covered
point e that is initially covered by the corresponding
label of the nearest rule {a1st

i , b1st
i , c1st

i } (left extreme,
vertex and right extreme). And let {a2nd

i , b2nd
i , c2nd

i }
be the definition points of the corresponding label
of the second nearest rule. Then, the new value e′

i is
computed as follows:

e′
i =

⎧
⎨

⎩

a1st
i + (c1st

i − a1st
i ) ∗ 0.1, If b2nd

i < b1st
i ,

c1st
i − (c1st

i − a1st
i ) ∗ 0.1, If b2nd

i > b1st
i ,

ei, If b2nd
i = b1st

i .
(1)

4. Finally, we infer with the new obtained point and
considering the complete RB.

2.4 Trade-off between interpretability and accuracy

As said, the support amplitude of the membership func-
tions is kept fixed in the lateral tuning. In this work,
we will also tune this amplitude in order to determine
the specificity or generality of a label. It involves some
advantages (accuracy improvements) and also some
drawbacks (interpretability costs) respect to the lateral
tuning, where only the membership function position is
adjusted:

– Advantages:

1. There is a potential accuracy improvement re-
spect to the lateral tuning since the 3-tuples rep-
resentation involves more freedom degrees.

2. To determine the subset of training points that
should be covered is easier, getting more specific
and consistent rules.

– Drawbacks:
1. The models obtained are less interpretable than

those considering the 2-tuple representation.

However, since they could be transformed to
classical Mamdani systems, the models consider-
ing the linguistic 3-tuples representation can be
considered at least as interpretable as those ob-
tained by classical methods adjusting the three
membership function definition points.

2. The search space increases respect to the lateral
tuning, making more difficult the derivation of
optimal models. However, this approach still in-
volves a reduction of the search space respect to
the classical tuning (one less parameter), which
is still well handled by means of an smart use of
the search technique.

Both approaches, lateral tuning and LA-tuning, pre-
sent a good trade-off between interpretability and accu-
racy. However, the proposed approach is closer to the
accuracy than the lateral tuning, being this last closer
to the interpretability. The choice between how inter-
pretable and how accurate the model must be, usually
depends on the user’s needs for a specific problem and
it will condition the selection of the type of tuning con-
sidered.

From now on, it must be taken into account that when
we remark the differences among the classical tuning,
the lateral tuning and the LA-tuning, we are separately
considering the global and the local approach, i.e., on
the one hand the global approaches are compared and
on the other hand the local approaches are compared. In
this way, the global LA-tuning reduces the search space
respect to the classical tuning of the DB and the local
LA-tuning reduces the search space respect to the classi-
cal tuning of approximate fuzzy rules. From the point of
view of the interpretability, they also should be individu-
ally compared, since the global approach tries to obtain
more interpretable models and the local approach tries
to obtain more accurate ones.

The evolutionary LA-tuning method based on the
global and local 3-tuples representation models is shown
in the next section.

3 Evolutionary LA-tuning algorithm

The automatic definition of fuzzy systems can be
considered as an optimization or search process and
nowadays, evolutionary algorithms, particularly genetic
algorithms (GAs) [16,25], are considered as the more
known and used global search technique. Moreover,
the genetic coding that they use allow them to include
prior knowledge and to use it leading the search up. For
this reason, Evolutionary Algorithms have been suc-
cessfully applied to learn fuzzy systems in the last years,
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Fig. 3 Scheme of CHC
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giving way to the appearance of the so called genetic
fuzzy systems (GFSs) [13,14]. Taking into account these
interesting characteristics, in this section we propose
a new GFS to perform the LA-tuning of membership
functions.

To do so, we consider the genetic model of CHC [15].
CHC is a GA that presents a good trade-off between
exploration and exploitation, being a good choice in
problems with complex search spaces. In the following,
the components needed to design the evolutionary tun-
ing process are explained. They are:

– Evolutionary model of CHC.
– Coding scheme and initial gene pool.
– Chromosome evaluation.
– Crossover operator.
– Restarting approach.

3.1 Evolutionary model of CHC

We will consider a population-based selection approach,
by using the CHC evolutionary model [15] in order to
perform an adequate global search. The genetic model
of CHC makes use of a “Population-based Selection”
approach. N parents and their corresponding offspring
are combined to select the best N individuals to take
part of the next population. The CHC approach makes
use of an incest prevention mechanism and a restarting
process to provoke diversity in the population, instead
of the well known mutation operator.

This incest prevention mechanism will be considered
in order to apply the crossover operator, i.e., two par-
ents are crossed if their hamming distance divided by 2 is
over a predetermined threshold, LT . Since, we will con-
sider a real coding scheme, we have to transform each
gene considering a Gray Code with a fixed number of
bits per gene (BITSGENE) determined by the system
expert. In this way, the threshold value is initialized as:

LT = (#Genes ∗ BITSGENE)/4.0,

where #Genes is the number of genes in the chromo-
some. Following the original CHC scheme, LT is decre-

mented by one when there is no new individuals in the
population in one generation. In order to make this
procedure independent of #Genes and BITSGENE, in
our case, LT will be decremented by a ϕ% of its initial
value (being ϕ determined by the user, usually 10%).
The algorithm restarts when LT is below zero.

A scheme of this algorithm is shown in Fig. 3.

3.2 Coding scheme and initial gene pool

Taking into account that two different types of tuning
have been proposed (global tuning of the semantics and
local tuning of the rules), there are two different kinds
of coding schemes. In both cases, a real coding is consid-
ered, i.e., the real parameters are the GA representation
units (genes). Depending on the type of tuning we want
to perform, we will consider one or another of the fol-
lowing coding schemes:

– Global tuning of the semantics: Joint of the param-
eters of the fuzzy partitions, lateral (CL) and ampli-
tude (CA) tuning. Let us consider the following
number of labels per variable: (m1, . . . , mn), with n
being the number of system variables (n − 1 input
variables and 1 output variable). Then, a chromo-
some has the following form (where each gene is
associated to the tuning value of the corresponding
label),

CT = (CL + CA),

CL = (cL
11, . . . , cL

1m1 , . . . , cL
n1, . . . , cL

nmn),

CA = (cA
11, . . . , cA

1m1 , . . . , cA
(n−1)1, . . . , cA

(n−1)mn).

See the CT part of Fig. 5 (in the next section) for
an example of coding scheme considering this ap-
proach.

– Local tuning of the rules: Joint of the lateral (CL)
and amplitude (CA) rule parameters. Let us cond-
ider that the FRBS has M rules, (R1, R2, . . . , RM),



Rule base reduction and genetic tuning of fuzzy systems based on the linguistic 3-tuples representation 407

with n system variables (n − 1 input variables and 1
output variable). Then, the chromosome structure is,

CT = (CL + CA),

CL = (cL
11, . . . , cL

1n, . . . , cL
m1, . . . , cL

mn),

CA = (cA
11, . . . , cA

1(n−1), . . . , cA
m1, . . . , cA

m(n−1)).

To make use of the available information, the ini-
tial FRBS obtained from automatic fuzzy rule learn-
ing methods is included in the population as an initial
solution. To do so, the initial pool is obtained with the
first individual having all genes with value ‘0.0’ (no dis-
placement or amplitude variation to represent the ini-
tial solution), and the remaining individuals generated
at random in [−0.5, 0.5).

3.3 Chromosome evaluation

To evaluate a determined chromosome we will use the
well-known mean square error (MSE):

MSE = 1
2 · |E|

|E|∑

l=1

(F(xl) − yl)2,

with |E| being the size of a data set E, F(xl) being the
output obtained from the FRBS decoded from the said
chromosome when the l-th example is considered and
yl being the known desired output.

3.4 Crossover operator

The crossover operator is based on the the concept of
environments (the offspring are generated around their
parents). These kinds of operators present a good coop-
eration when they are introduced within evolutionary
models forcing the convergence by pressure on the off-
spring (as the case of CHC). Figure 4 depicts the behav-
ior of these kinds of operators, which allow the offspring
genes to be around the genes of one parent, Parent Cen-
tric BLX (PCBLX), or around a wide zone determined
by both parent genes BLX-α. Particularly, we consider
the PCBLX operator that is based on the BLX-α [24].

The PCBLX is described as follows. Let us assume
that X = (x1 · · · xg) and Y = (y1 · · · yg), (xi, yi ∈ [ai, bi]
⊂ �, i = 1 · · · g), are two real-coded chromosomes that
are going to be crossed.

This crossover operator generates the offspring Z =
(z1 · · · zg), where zi is a randomly (uniformly) chosen
number from the interval [li, ui], with li = max{ai, xi−I},
ui = min{bi, xi + I}, and I =| xi − yi |.

The parents X and Y will be named differently: X will
be called female parent, and Y will be called male parent.

In this way, by taking X as female parent (Y as male),
and then by taking Y as female parent (X as male) this
algorithm generates two offspring.

3.5 Restarting approach

To get away from local optima, this algorithm uses a
restart approach [15]. In this case, the best chromosome
is maintained and the remaining are generated at ran-
dom by adding to each gene of the best chromosome a
random number generated within the variation interval
[−0.125, 0.125). If the resulting value is less (greater)
than −0.5 (0.5) it is replaced by the extreme value −0.5
(0.5). It follows the principles of CHC [15], performing
the restart procedure when the threshold value LT is
lower than zero.

4 Rule selection and LA-tuning

Sometimes, a large number of fuzzy rules must be used
to reach an acceptable accuracy degree. However, an
excessive number of rules makes difficult to understand
the model behavior. Moreover, we may find different
kinds of rules in a large fuzzy rule set: irrelevant rules,
which do not contain significant information; redundant
rules, whose actions are covered by other rules; erro-
neous rules, which are wrong defined and distort the
FRBS performance; and conflicting rules, which perturb
the FRBS performance when they coexist with others.
These kinds of rules are usually obtained in the following
situations:

1. When the final RB is generated by only considering
the expert’s knowledge, redundant, conflicting and
even erroneous rules are usually obtained.

2. When we consider a fuzzy rule set learning process
with tendency to generate too many rules (sometimes
advisedly), redundant or conflicting rules could be
found in the obtained RB. For example, methods as

Fig. 4 Scheme of the behavior of the crossover operators based
on environments
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the Wang and Mendel algorithm [42] or the Input
Space oriented Strategy [28] are biased by covering
criteria trying to ensure a high covering degree that
sometimes is not needed. The Mixed Method
(MM) [6] consists of adding rules to the linguistic
model obtained by the Wang and Mendel algorithm
in the fuzzy input subspaces that having examples
do not still have a rule, trying to improve the lin-
guistic model accuracy by adding even more rules.
However, these kinds of methods are still useful to
obtain a set of promising candidate rules in order to
subsequently select those with the best cooperation
as a second stage [11,29]. In these cases, two main sit-
uations favor the generation of these kinds of rules:

– In complicated multidimensional problems with
highly nonlinear input-output relations, in which
the cooperation of the obtained rules is more diffi-
cult to be obtained and more rules are usually
needed.

– In high-dimensional problems, in which the num-
ber of rules in the RB grows exponentially as more
inputs are added. A large rule set might contain
more redundant or even conflicting rules.

To face this problem, a fuzzy rule set reduction pro-
cess can be developed to achieve the goal of minimizing
the number of rules used while maintaining (or even
improving) the FRBS performance. To do that, errone-
ous and conflicting rules that degrade the performance
are eliminated, obtaining a more cooperative fuzzy rule
set and therefore involving a potential improvement of
the system accuracy. Moreover, in many cases the accu-
racy is not the only requirement of the model but also the
interpretability becomes an important aspect. Reducing
the model complexity is a way to improve the system
readability, i.e., a compact system with few rules requires
a minor effort to be interpreted.

Fuzzy rule set reduction is generally applied as a post-
processing stage, once an initial fuzzy rule set has been
derived. We may distinguish between two different ap-
proaches to obtain a compact fuzzy rule set:

– Selecting fuzzy rules: It involves obtaining an opti-
mal subset of fuzzy rules from a previous fuzzy rule
set by selecting some of them. We may find sev-
eral methods for rule selection, with different search
algorithms that look for the most successful combi-
nation of fuzzy rules [11,22,27,29,30,34].
In [35], an interesting heuristic rule selection proce-
dure is proposed where, by means of statistical mea-
sures, a relevance factor is computed for each fuzzy
rule composing the linguistic FRBSs to subsequently

select the most relevant ones. The philosophy of
ordering the rules with respect to an importance
criterion and selecting a subset of the bests seems
similar to the orthogonal transformation-methods
considered by Takagi-Sugeno-type FRBSs [43,44].

– Merging fuzzy rules: It is an alternative approach
that reduces the fuzzy rule set by merging the existing
rules. In [33], the authors propose to merge neighbor-
ing rules, i.e., fuzzy rules where the linguistic terms
used by the same variable in each rule are adja-
cent. Another proposal is presented in [26], where a
special consideration to the merging order is made.
On the other hand, in Takagi-Sugeno-type FRBSs,
processes that simplify the fuzzy models by merging
fuzzy rules have also been proposed [39–41].

These kinds of techniques for rule reduction could be
easily combined with other post-processing techniques
to obtain more compact and accurate FRBSs. In this
way, some works have considered the selection of rules
together with the tuning of membership functions by
coding all of them (rules and parameters) in the same
chromosome [5,17].

4.1 Positive synergy between both approaches

There are several reasons explaining the positive syn-
ergy between the rule selection and the tuning of mem-
bership functions. Some of them are:

– The tuning process is affected when erroneous or
conflictive rules are included in the initial RB. When
the RB of a model being tuned contains bad rules
(greatly increasing the system error), the tuning pro-
cess tries to reduce the effect of these kinds of rules,
adapting them and the remaining ones to avoid the
bad behavior of such rules. This way to work im-
poses hard restrictions reducing the process ability
to obtain precise linguistic models. Furthermore, in
some cases this also affect to the model interpret-
ability, since the membership functions comprising
bad rules does not have the shape and location best
representing the information being modeled.
This problem grows as the problem complexity grows
(i.e., problems with a large number of variables
and/or rules) and when the rule generation method
does not ensure the generation of rules with good
quality (e.g., when the initial RB is obtained from
experts). In these cases, the tuning process is very
complicated since the search ability is dedicated to
reduce the bad behavior of some rules instead of
improving the behavior of the remaining ones.



Rule base reduction and genetic tuning of fuzzy systems based on the linguistic 3-tuples representation 409

In these cases, the rule selection could help the tuning
mechanism by removing the rules that really degrade
the model accuracy.

– Sometimes redundant rules can not be removed by
only using a rule selection method, since these kinds
of rules could reinforce the action of poor rules
improving the model accuracy. The tuning of mem-
bership functions can change the behavior of these
rules making unnecessary the reinforcement action,
and therefore, helping the rule selection technique
to remove redundant rules.

Therefore, combining rule selection and tuning ap-
proaches could result in important improvements of
the system accuracy, maintaining the interpretability to
an acceptable level [5,17]. However, in some cases, the
search space considered when both techniques are com-
bined is too large, which could provoke the derivation
of sub-optimal models [5].

In this section, we propose the selection of a coopera-
tive set of rules from a candidate fuzzy rule set together
with the learning of the α and β parameters. This pursues
the following aims:

– To improve the linguistic model accuracy selecting
the set of rules best cooperating while the LA-tuning
is performed to improve the location and amplitude
of the membership functions.

– To obtain simpler, and thus easily understandable,
linguistic models by removing unnecessary rules.

– To favor the combined action of the tuning and selec-
tion strategies (which involves a larger search space)
by considering the simpler search space of the LA-
tuning (only two parameters per label).

4.2 Evolutionary algorithm

To select the subset of rules best cooperating and to
obtain the α and β parameters, we consider a GA cod-
ing all of them (rules and parameters) in a chromosome.
This algorithm is based on the one proposed in Sect. 3,
also considering the genetic model of CHC [15].

To do so, we must take into account the existence
of binary genes (rule selection) and real values (lat-
eral displacements and amplitude variation) within the
same chromosome. Therefore, the algorithm proposed
in Sect. 3 is changed in order to consider a double coding
scheme and to apply the appropriate genetic operators
for each chromosome part. The following changes are
considered in order to integrate the reduction process
within the proposed tuning method:

– Coding scheme: A double coding scheme for both,
LA-tuning and rule selection, is considered:

C = CT + CS.

In this case, the previous approach (part CT) is com-
bined with the rule selection by allowing an addi-
tional binary vector CS that determines when a rule
is selected or not (alleles ‘1’ and ‘0’ respectively).
Considering the M rules contained in the prelimi-
nary/candidate rule set, the chromosome part CS =
(c1, . . . , cM) represents a subset of rules composing
the final RB, such that:

IF ci = 1 THEN (Ri ∈ RB) ELSE (Ri 	∈ RB),

with Ri being the corresponding i-th rule in the can-
didate rule set and RB being the final RB. Figure 5
graphically depicts an example of correspondence
between a chromosome and its associated KB when
the global LA-tuning and the rule selection are con-
sidered.

– Initial gene pool: The initial pool is obtained with an
individual having all genes with value ‘0.0’ in the CT
part and ‘1’ in the CS part, and the remaining indi-
viduals generated at random in [−0.5, 0.5) and {0, 1}
respectively.

– Crossover: The environment-based crossover oper-
ator presented in Sect. 3 for the CT part combined
with the HUX crossover [15] in the CS part. The
HUX crossover exactly interchanges the mid of the
alleles that are different in the parents (the genes to
be crossed are randomly selected among those that
are different in the parents). This operator ensures
the maximum distance of the offspring to their par-
ents (exploration).
In this case, the incest prevention is applied consid-
ering a different threshold for each part, LT applied
to the CT part (as in Sect. 3) and LS applied to the CS
part (the HUX crossover is only applied if the ham-
ming distance in CS between both parents divided
by 2 is over LS). LS is initialized as:

LS = #GenesCS/4.0,

where #GenesCS is the number of genes in CS.
Finally, the offspring are generated in the following
way:
1. If any crossover is applied, no offspring are gen-

erated.
2. If only the PBLX crossover is applied, two off-

spring are generated by respectively copying the
CS part of their parents.

3. If only the HUX crossover is applied, two off-
spring are generated by respectively copying the
CT part of their parents.
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Fig. 5 Example of coding scheme considering the global LA-tuning and rule selection

4. If both PBLX and HUX are applied, two off-
spring are generated by joining the two ones from
the CT part with the two ones from the CS part.

If no offspring are included in the new population by
the application of PBLX, LT is decreased as said in
Sect. 3. If no offspring are included in the new pop-
ulation by the application of HUX, LS is decreased
by one.

– Restarting approach: To get away from local optima,
the restarting operator is applied when both thresh-
old values LT and LS are lower than zero. In this case,
all the chromosomes set up their CS parts to that of
the best chromosome. Once the CS part is fixed (first
restarting), the LS threshold is no more considered
since it has no sense. The parameters of the CT parts
are generated at random by adding to each gene of
the best chromosome a random number generated
within the variation interval [−0.125, 0.125).

5 Experimental study

To evaluate the goodness of the four proposed
approaches (local and global tuning with and without
rule selection), two real-world electrical energy distribu-
tion problems [10] with different complexities (different

number of variables and rules) are considered to be
solved:

– Estimating the length of low voltage lines in rural
nuclei. This problem presents noise and strong
nonlinearities which makes the modeling surface very
complicated. On the other hand, a short number of
variables have to be considered involving a short
search space (small complexity).

– Estimating the maintenance costs of medium voltage
lines in a town. This problem presents four input vari-
ables and a considerable number of rules, and there-
fore involves a larger search space (high complexity).

The initial set of fuzzy rules will be obtained from
automatic learning methods. In both cases, the well-
known ad hoc data-driven learning algorithm of Wang
and Mendel [42] is applied to generate an initial set
of candidate linguistic rules. To do so, we will consider
symmetrical fuzzy partitions of triangular-shaped mem-
bership functions. Once the initial RB is generated, the
proposed post-processing algorithms will be applied. In
the following subsections these problems are introduced
and solved to analyze the behavior of the proposed
methods.
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Table 1 Methods considered for comparison

References Method Description

[42] WM Learning method
[34] S Rule selection Method
[7] T Classical genetic tuning
[5] PAL Tuning of parameters, domains

and local linguistic modifiers
[1] GL Global lateral tuning
[1] LL Local lateral tuning
– GLA Global lateral amplitude tuning
– LLA Local lateral amplitude tuning

5.1 Experimental set-up

The methods considered for the experiments are briefly
described in Table 1. The use of two of them connected
by ‘+’ indicates that they are applied as a combination.
E.g., GLA+S indicates a global LA-tuning together with
rule selection.

As said, the WM method is considered to obtain the
initial RB to be tuned. The initial linguistic partitions
to obtain the initial RB are comprised by five linguistic
terms. The tuning methods are applied once this initial
RB has been obtained. T is a classical membership func-
tion parameter tuning algorithm. The PAL method has
been compared with tuning methods of the parameters,
domain, linguistic modifiers and with any combination
of any two of them obtaining the best results [5]. For this
reason, we only consider the PAL method (parameters,
domains and linguistic edges) in this study. And finally,
the GL and LL methods respectively performs a global
and a local lateral tuning of the membership functions.

To develop the different experiments we consider a
5-folder cross-validation model, i.e., five random parti-
tions of data1 with a 20%, and the combination of four
of them (80%) as training and the remaining one as
test. For each one of the five data partitions, the tun-
ing methods have been run six times, showing for each
problem the averaged results of a total of 30 runs. More-
over, a t-test (with 95 percent confidence) was applied in
order to ascertain if differences in the performance of
the proposed approaches are significant when compared
against the one for the other algorithms in the respective
table.

The following values have been considered for the
parameters of each method:2 51 individuals, 50,000 eval-

1 These data sets are available at:
http://www.decsai.ugr.es/∼casillas/fmlib/
2 With these values we have tried to ease the comparisons select-
ing standard common parameters that work well in most cases
instead of searching very specific values for each method. More-
over, we have set a large number of evaluations in order to allow

uations, 30 bits per gene for the Gray codification
and ϕ = 10 (0.2 and 0.6 as mutation and crossover
probability per chromosome and 0.35 for the factor a
in the max-min-arithmetical crossover for T and PAL).

5.2 Estimating the length of low voltage lines

For an electric company, it may be of interest to measure
the maintenance costs of its own electricity lines. These
estimations could be useful to allow them to justify their
expenses. However, in some cases these costs can not be
directly calculated. The problem comes when trying to
compute the maintenance costs of low voltage lines and
it is due to the following reasons. Although maintenance
costs depend on the total length of the electrical line, the
length of low voltage lines would be very difficult and
expensive to be measured since they are contained in
little villages and rural nuclei. The installation of these
kinds of lines is often very intricate and, in some cases,
one company can serve to more than 10,000 rural nuclei.

Due to this reason, the length of low voltage lines
can not be directly computed. Therefore, it must be esti-
mated by means of indirect models. The problem in-
volves relating the length of low voltage line of a certain
village with the following two variables: the radius of the
village and the number of users in the village [10]. We
were provided with the measured line length, the num-
ber of inhabitants and the mean distance from the center
of the town to the three furthest clients in a sample of
495 rural nuclei. Five partitions1 considering an 80%
(396) in training and a 20% (99) in test are considered
for the experiments. The existing dependency of the two
input variables with the output variable in the training
and test data sets of one of the five partitions is shown in
Fig. 6 (notice that they present strong non-linearities).

The results obtained in this problem by the analyzed
methods are shown in Table 2, where #R stands for the
number of rules, MSEtra and MSEtst respectively for the
averaged error obtained over the training and test data,
σ for the standard deviation and t-test represents the
following information:

� represents the best averaged result.
+ means that the best result has better behavior than

the one in the corresponding row.
= denotes that the results are statistically equal accord-

ing to the t-test.

the compared algorithms to achieve an appropriate convergence.
No significant changes were achieved by increasing that number
of evaluations.
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Fig. 6 a (X1, Y) and (X2, Y) dependency in the training data; b (X1, Y) and (X2, Y) dependency in the test data

Table 2 Results obtained in
the line length estimation
problem

Method #R MSEtra σtra t − test MSEtst σtst t − test

WM 12.4 234712 32073 + 242147 24473 +
S 10.0 226135 19875 + 241883 19410 +

T 12.4 158662 6495 + 221613 29986 +
PAL 12.4 141638 4340 + 189279 19523 =
T+S 8.9 156313 2967 + 193477 49912 =
PAL+S 10.6 145712 5444 + 191922 16987 =

GL 12.4 166674 11480 + 189216 14743 =
LL 12.4 139189 3155 + 191604 18243 =
GL+S 9.0 160081 7316 + 189844 22448 =
LL+S 10.5 141446 3444 + 186746 15762 =

GLA 12.4 157604 9158 + 185810 18812 �

LLA 12.4 133076 4330 � 191945 16456 =
GLA+S 10.2 155404 9264 + 189472 20393 =
LLA+S 10.4 134541 5752 = 189057 20106 =

Analyzing the results presented in Table 2 we can
point out the following conclusions:

– Considering these techniques, the RB is obtained
by means of a generation method to learn few rules
(12.4 from the 25 possible rules). It allows us to ob-
tain a compact and accurate tuned model.

– In the test partitions, most of the methods show a
similar error, although the GLA method obtains the

best averaged results. This behavior is due to the
noise and the strong non-linearities that this prob-
lem presents, which makes very difficult to avoid the
over-learning, specially when we are trying to reduce
the training error more and more.

– Regardless, in the training sets, the local LA-
tuning obtains better results than the remaining
approaches. The real achievement of the local LA-
tuning is that the test error is not increased respect to
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Fig. 7 Initial DB, tuned DB
and RB of a model obtained
with GLA+S in the low
voltage line length estimation
problem (the unused labels
were removed from this
figure)

X1

l1 l2 l3 l4 l5

X2

l1 l2 l3 l4 l5

Y

l1 l2 l3 l4 l5

l1'=(l1,-0.2,-0.2) l2'=(l2,-0.2,0.0) l3'=(l3,0.2,0.1)

l1'=(l1,0.1,0.4) l2'=(l2,0.0,-0.5) l3'=(l3,-0.1,-0.5) l4'=(l4,-0.4,-0.4) l5'=(l5,0.4,0.1)

l1'=(l1,0.2,0.0) l2'=(l2,0.2,0.0) l3'=(l3,0.0,0.0) l5'=(l5,-0.3,0.0)

the remaining approaches, despite of the very good
results that this method obtains in training.

– Respect to the global approach, only small improve-
ments have been obtained in training respect to the
global lateral tuning. The short number of variables
considered in this problem makes the search space
not too complex for the global approach and
therefore, there are not significant differences in the
tuning methods.

– With regard to the combination of the tuning and
the selection methods, GLA+S and LLA+S respec-
tively show more or less the same accuracy than GLA
and LLA considering a reduced number of rules and
therefore reaching a better trade-off between inter-
pretability and accuracy. Notice that, the combina-
tion of several techniques (specially when they act
on different parts of the FRBS) increases the search
space complexity. However, in the case of the global
lateral tuning, the accuracy even improves when it
is combined with the rule selection approach, which
could indicate a better behavior of the global ap-
proach when the search space grows.

Fig. 8 RB and lateral displacements of a model obtained with
LLA+S in the low voltage line length estimation problem

Figure 7 presents the evolved fuzzy linguistic parti-
tions and the decision table obtained by GLA+S from
one of the 30 runs performed in the first problem. On
the other hand, Fig. 8 depicts one of the 30 RBs obtained
with LLA+S in this problem, where we can see how the
local tuning evolves each label of the different rules in a
different way. The initial membership functions consid-
ered by this method are the same shown in Fig. 7 with
grey color.



414 R. Alcalá et al.

Table 3 Results obtained in the maintenance costs estimation problem

Method #R MSEtra σtra t − test MSEtst σtst t − test

WM 65 57605 2841 + 57934 4733 +
S 40.8 41086 1322 + 59942 4931 +

T 65 18602 1211 + 22666 3386 +
PAL 65 10545 279 + 13973 1688 +
T+S 41.9 14987 391 + 18973 3772 +
PAL+S 57.4 12851 362 + 16854 1463 +

GL 65 23064 1479 + 25654 2611 +
LL 65 3664 390 + 5858 1798 +
GL+S 49.1 18801 2669 + 22586 3550 +
LL+S 58.0 3821 385 + 6339 2164 +

GLA 65 17950 1889 + 21212 2686 +
LLA 65 2747 282 � 4540 788 �

GLA+S 49.4 17538 2391 + 21491 4168 +
LLA+S 47.5 3404 433 + 5633 1452 +

To easy the graphical representation, in all these fig-
ures, the labels are named from ‘l1’ to ‘lLi (with Li being
the number of labels of the i-th variable). Nevertheless,
such labels would have associated a linguistic meaning
determined by an expert. In this way, if the ‘l1’ label of
the ‘X1’ variable represents ‘LOW’, ‘l1+0.11’ could be
interpreted as ‘a little smaller than LOW’ (based on the
expert opinion) or, as in the case of the classical tun-
ing approach, it could be interpreted maintaining the
original meaning of such label. It is the case of Fig. 7,
where practically all the new labels could maintain their
initial meanings or be easily renamed.

These figures show how small variations in the mem-
bership functions lead to important improvements in the
behavior of the obtained FRBSs. Furthermore, the diffi-
cult trade-off between accuracy and complexity can be
observed taking into account both, the global RB and
the local RB (Fig. 7, 8). The accuracy can be improved
considering a local approach but always at the expense
of losing some interpretability.

5.3 Estimating the maintenance costs of medium
voltage lines

Estimating the maintenance costs of the medium voltage
electrical network in a town [10] is a complex but inter-
esting problem. Since a direct measure is very difficult
to obtain, the consideration of models becomes useful.
These estimations allow electrical companies to justify
their expenses. Moreover, the model must be able to
explain how a specific value is computed for a certain
town. Our objective will be to relate the maintenance
costs of medium voltage line with the following four vari-
ables: sum of the lengths of all streets in the town, total
area of the town, area that is occupied by buildings, and

energy supply to the town. We will deal with estimations
of minimum maintenance costs based on a model of the
optimal electrical network for a town in a sample of
1,059 towns. Five partitions1 considering an 80% (847)
in training and a 20% (212) in test are considered for
the experiments.

The results obtained in this problem by the analyzed
methods are shown in Table 3 (these kinds of table was
described in the previous subsection). Analyzing the re-
sults presented in Table 3 we can stress the following
facts:

– The initial RBs are also comprised by few rules, 65
from the 625 possible rules, which is a reasonable
number for this problem.

– The LA-tuning methods show an important reduc-
tion of the MSE respect to the classical methods
(specially the LLA method) and reasonable improve-
ments respect to the lateral tuning.

– The best results are obtained by the local approach,
presenting a good relationship between the search
space complexity and the results obtained, and get-
ting a good trade-off between accuracy and local
interpretability. Furthermore, since the lateral and
amplitude variations are related to the original global
labels, a global interpretation could be done in these
terms.

– GLA+S and LLA+S respectively shows more or less
the same accuracy than GLA and LLA considering
a reduced number of rules. Notice that the LLAT+S
method removes 10 more rules than LL+S.

Figures 9 and 10 depict one of the 30 KBs respec-
tively obtained with GLA and GLA-S. Analyzing both
linguistic models, we can see that in most of the cases,
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Fig. 9 Initial DB, tuned DB
and RB of a model obtained
with GLA in the maintenance
costs estimation problem
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X2
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X3

l1 l2 l3 l4 l5
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Y
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l1'=(l1,-0.5,-0.5) l2'=(l2,-0.3,0.5) l3'=(l3,-0.2,0.5) l4'=(l4,0.0,0.5) l5'=(l5,-0.2,-0.1)

l1'=(l1,-0.1,-0.3) l2'=(l2,0.2,0.5)l3'=(l3,-0.1,-0.4)l4'=(l4,0.4,-0.5) l5'=(l5,-0.5,0.5)

l1'=(l1,0.2,-0.2) l2'=(l2,0.1,-0.4) l3'=(l3,-0.1,-0.5) l4'=(l4,0.0,-0.5)l5'=(l5,-0.5,-0.3)

l1'=(l1,0.3,-0.1) l2'=(l2,0.1,-0.1)l3'=(l3,-0.2,0.2)l4'=(l4,0.1,-0.5) l5'=(l5,-0.2,-0.3)

l1'=(l1,0.1,0.0) l2'=(l2,0.1,0.0) l3'=(l3,0.0,0.0) l4'=(l4,0.1,0.0) l5'=(l5,-0.3,0.0)
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Fig. 10 Initial DB, tuned DB
and RB of a model obtained
with GLA+S in the
maintenance costs estimation
problem
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l1'=(l1,-0.5,0.5) l2'=(l2,-0.1,-0.1) l3'=(l3,0.0,-0.1) l4'=(l4,0.0,0.0) l5'=(l5,-0.1,0.3)

l1'=(l1,0.3,-0.5) l2'=(l2,0.1,-0.1) l3'=(l3,-0.1,-0.2) l4'=(l4,0.0,0.1) l5'=(l5,-0.2,0.5)

l1'=(l1,0.1,0.4) l2'=(l2,0.1,-0.1) l3'=(l3,0.0,0.1) l4'=(l4,0.0,-0.1) l5'=(l5,-0.1,0.0)

l1'=(l1,0.1,0.0) l2'=(l2,0.1,0.0) l3'=(l3,0.0,0.0) l4'=(l4,0.1,0.0) l5'=(l5,-0.1,0.0)

the final tuned membership functions are very similar
to the original ones, probably preserving their original
meanings from an expert point of view.

In Fig. 9, only the second variable presents two la-
bels whose meaning could change. This fact, does not
occur in the case of GLA-S, Fig. 10, where only the first
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variable presents some membership functions with sig-
nificant variations respect to the original ones. However,
the corresponding labels could probably maintain their
original meanings. It can be due to the existence of bad
rules in the RB, which can provoke strong variations in
the membership functions in order improve the behav-
ior of such rules. Removing these kinds of rules can solve
this problem.

5.4 Analysis on the use of the new inference system

In this section, we present a comparative study of the
proposed methods with and without considering the new
inference system to work with non-covered data. This
study is only performed on the first problem presented
in this section (estimation of the length of low voltage
lines). This problem presents strong non-linearities, two
noise points and a few number of training examples,
which forces to the tuned linguistic models to sometimes
not cover any test datum (a new case is given for the test
in one of the five data partitions) or even to not cover
any training datum (a noise point is given for training in
one of the five data partitions). The two example data
that are not covered are the two noise points presented
in Table 4.

In the second problem, the example data are enough,
well distributed and no noise points are presented.

Table 4 Non covered data

X1 X2 Y

320 880 3090
29 1200 3985

Table 5 Results obtained in the line length estimation problem

Method #R MSEtra σtra t-test MSEtst σtst t-test

Zero as Default Output (0)
GLA 12.4 158611 9091 + 217953 38780 +
LLA 12.4 132815 5715 � 201400 25034 +
GLA+S 11 157068 8253 + 228922 44799 +
LLA+S 11.1 136493 5133 = 212655 31089 +

The mid of the Output Domain as Default Output (3797.5)
GLA 12.4 158284 9540 + 187879 18408 =
LLA 12.4 134003 3815 = 187568 15828 =
GLA+S 9.9 155927 6328 + 187820 20074 =
LLA+S 9.8 139047 6288 + 190678 20892 =

With the New Inference System
GLA 12.4 157604 9158 + 185810 18812 �

LLA 12.4 133076 4330 = 191945 16456 =
GLA+S 10.2 155404 9264 + 189472 20393 =
LLA+S 10.4 134541 5752 = 189057 20106 =

Therefore, in this problem, all the example data (in
training and test) are finally covered by the obtained
models. For this reason, an analysis on this problem has
no sense.

The results obtained are presented in Table 5. Classi-
cally, when an input pattern is not covered by any rule,
a default output is given by the system. The two most
used approaches are: to consider zero as default output
(typical in fuzzy control problems) or to consider the mid
of the output domain as default output. Both approaches
are considered in our study to be shown in the table. In
our problem, this mid value of the output domain is
exactly 3797.5, that is very near to the desired output
of the non-covered points presented in Table 4. This
fact favors a better generalization ability of the methods
considering this second approach. However, we though
that this would not be a fair way to present our re-
sults, by which we developed the new inference system
presented in Sect. 2.3 to better provide for non-covered
data. In this way, the proposed methods could also work
in other problems in which the mid value of the output
domain does not coincide with the desired output of the
non-covered data.

As can be seen in the results presented in Table 5,
the default output considered has a great influence in
the generalization ability of the obtained models. The
new proposed inference seems to be an effective way to
determine a good output value based on the informa-
tion summarized in the final tuned rules. At this point,
we must point out that all the methods considered for
comparisons in Sects. 5.2 and 5.3 consider the mid of
the output domain as default output (helping them to
obtain better test errors) since practically all of them
were proposed following this approach.
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6 Conclusion

In this work, we extend the lateral tuning of member-
ship functions proposing a new post-processing method
for the lateral and amplitude tuning of membership
functions. This approach proposes a new symbolic rep-
resentation with two parameters (α, β), respectively
representing the lateral displacement and the amplitude
variation of the support of a label.

In the following, we present our conclusions to sub-
sequently present some further considerations:

– The linguistic 3-tuples based rule representation to-
gether with the proposed evolutionary tuning algo-
rithm, provides a good mechanism to obtain accurate
models, although it involves a slight lost of interpret-
ability.

– In most of the cases, only small variations have been
performed on the original membership functions,
which maintains the interpretability to a reasonable
level.

– The use of rule selection methods to reduce the num-
ber of rules together with the LA-tuning is a good
approach to obtain more compact models with a sim-
ilar accuracy. This combination increases the search
space (tuning of the parameters + selection of the
rules), which is easily handled thanks to the new rule
representation.

Finally, we want point out that the use of differ-
ent FRBS learning schemes considering the linguistic
3-tuples rule representation model could be a good
approach to obtain more compact and precise models.
In this way, our main interest for the future is to obtain
whole KBs by means of the evolutionary learning of
the DB a priori [12], using the linguistic 3-tuples rule
representation and a basic rule generation method.
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